Supersymmetric transformations and Hamiltonians generated by the Marchenko equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L455
(http://iopscience.iop.org/0305-4470/21/8/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Supersymmetric transformations and Hamiltonians generated by the Marchenko equations

C V Sukumar
Institute of Physics, University of Aarhus, DK- 8000 Århus C, Denmark

Received 9 February 1988

Abstract

Three different isospectral Hamiltonians have been generated by eliminating the ground state of a given Hamiltonian using procedures based on the Marchenko equations for left- and right-incident waves and the standard model of supersymmetric quantum mechanics. It is shown that each of the two procedures based on the Marchenko equation is equivalent to the application of two appropriately chosen supersymmetric transformations.

Let

$$
\begin{equation*}
H_{1}=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{1}(x) \quad-\infty \leqslant x \leqslant \infty \tag{1}
\end{equation*}
$$

be a Hamiltonian with bound states $\psi_{1}\left(E_{i}\right)$ at energies $E_{i}, i=1,2, \ldots, n$. Three different procedures for eliminating the ground state of H_{1} and generating a new Hamiltonian with bound states at energies $E_{i}, i=2,3, \ldots, n$, have been discussed in the literature. The first procedure based on the Gel'fand-Levitan integral equation (Gel'fand and Levitan 1951) was discussed by Abraham and Moses (1980) and will hereafter be referred to as AM. For the spatial domain $-\infty \leqslant x \leqslant \infty$ the procedure used by AM is equivalent to using the Marchenko equation (Marchenko 1955) for waves incident from the left (Newton 1980). The second procedure (Pursey 1986) is based on the Marchenko equation for waves incident from the right and will hereafter be referred to as m . The third procedure is based on a standard model of supersymmetric quantum mechanics (Witten 1981) and finds a partner Hamiltonian to H_{1} by using an appropriate factorisation of H_{1} (Andrianov et al 1984, Sukumar 1985a, b). The third procedure has been identified as being equivalent to the use of the Darboux transformation for second-order differential equations (Darboux 1882) and will be referred to as D. The three new Hamiltonians generated by the three procedures have the same spectrum of eigenvalues but in general have different reflection and transmission coefficients for positive energies (Pursey 1986, Luban and Pursey 1986). It is the purpose of this letter to show that the procedures used by AM and m are each equivalent to a different two-step procedure based on two appropriately chosen D transformations.

It has been shown that the ground-state eigenfunction $\psi_{1}\left(E_{1}\right)$ of H_{1} may be used to factorise H_{1} in the form

$$
\begin{align*}
& H_{1}=A_{1}^{+}\left(E_{1}\right) A_{1}^{-}\left(E_{1}\right)+E_{1} \tag{2}\\
& A_{1}^{ \pm}\left(E_{1}\right)=\frac{1}{\sqrt{ } 2}\left(\pm \frac{\mathrm{d}}{\mathrm{~d} x}+\left\{\frac{\mathrm{d}}{\mathrm{~d} x} \ln \psi_{1}\left(E_{1}\right)\right\}\right) . \tag{3}
\end{align*}
$$

$\psi_{1}\left(E_{1}\right)$ will be assumed to be normalised to unity throughout this paper. The D transformation generates the partner Hamiltonian

$$
\begin{equation*}
H_{2}=A_{1}^{-}\left(E_{1}\right) A_{1}^{+}\left(E_{1}\right)+E_{1}=H_{1}-\left(\mathrm{d}^{2} / \mathrm{d} x^{2}\right) \ln \psi_{1}\left(E_{1}\right) \tag{4}
\end{equation*}
$$

whose spectrum is identical to that of H_{1} except for the missing ground-state energy E_{1}. The eigenstates of H_{2} are given by

$$
\begin{equation*}
\psi_{2}\left(E_{i}\right) \sim A_{1}^{-}\left(E_{1}\right) \psi_{1}\left(E_{i}\right) \quad i=2,3, \ldots, n . \tag{5}
\end{equation*}
$$

Even though E_{1} is not an eigenenergy of H_{2}, a formal solution of the Schrödinger equation for H_{2} at energy E_{1} may be given as

$$
\begin{equation*}
\varphi_{2}\left(E_{1}\right) \sim\left[\psi_{1}\left(E_{1}\right)\right]^{-1} . \tag{6}
\end{equation*}
$$

A second linearly independent solution given by

$$
\begin{equation*}
\tilde{\varphi}_{2}\left(E_{1}\right)=\varphi_{2}\left(E_{1}\right) \int^{x}\left[\varphi_{2}\left(E_{1}\right)\right]^{-2} \mathrm{~d} y \tag{7}
\end{equation*}
$$

may be used to give the general solution

$$
\begin{equation*}
\psi_{2}\left(E_{1}, \lambda\right)=\left[\psi_{1}\left(E_{1}\right)\right]^{-1}\left(1+\lambda \int_{-\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y\right) . \tag{8}
\end{equation*}
$$

$\psi_{2}\left(E_{1}, \lambda\right)$ may then be used to factorise H_{2} in the new form

$$
\begin{align*}
& H_{2}=A_{2}^{+}\left(E_{1}, \lambda\right) A_{2}^{-}\left(E_{1}, \lambda\right)+E_{1} \tag{9}\\
& A_{2}^{ \pm}\left(E_{1}, \lambda\right)=\frac{1}{\sqrt{ } 2}\left(\pm \frac{\mathrm{d}}{\mathrm{~d} x}+\left\{\frac{\mathrm{d}}{\mathrm{~d} x} \ln \psi_{2}\left(E_{1}, \lambda\right)\right\}\right) . \tag{10}
\end{align*}
$$

This new factorisation allows the identification of a new supersymmetric partner to H_{2} by the application of a second D transformation and is given by

$$
\begin{align*}
H_{3}(\lambda) & =A_{2}^{-}\left(E_{1}, \lambda\right) A_{2}^{+}\left(E_{1}, \lambda\right)+E_{1} \\
& =H_{2}-\left(\mathrm{d}^{2} / \mathrm{d} x^{2}\right) \ln \psi_{2}\left(E_{1}, \lambda\right) \\
& =H_{1}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \ln \left(1+\lambda \int_{-\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y\right) . \tag{11}
\end{align*}
$$

The eigenfunctions of H_{3} for energies $E_{i}, i=2,3, \ldots, n$, are given by

$$
\begin{equation*}
\psi_{3}\left(E_{i}, \lambda\right) \sim A_{2}^{-}\left(E_{1}, \lambda\right) \psi_{2}\left(E_{i}\right) \quad i=2,3, \ldots, n . \tag{12}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\psi_{3}\left(E_{1}, \lambda\right) \sim\left[\psi_{2}\left(E_{1}, \lambda\right)\right]^{-1} . \tag{13}
\end{equation*}
$$

Equations (12), (10), (5) and (3) may be used to generate the eigenfunctions of H_{3} for energies $E_{i}, i \neq 1$, in the form

$$
\begin{align*}
\psi_{3}\left(E_{i}, \lambda\right)= & \psi_{1}\left(E_{i}\right)-\frac{1}{2\left(E_{i}-E_{1}\right)} \frac{\lambda \psi_{1}\left(E_{1}\right)}{\left[1+\lambda \int_{-\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y\right]} \\
& \times\left\{\psi_{1}\left(E_{1}\right) \frac{\mathrm{d}}{\mathrm{~d} x} \psi_{1}\left(E_{i}\right)-\psi_{1}\left(E_{i}\right) \frac{\mathrm{d}}{\mathrm{~d} x} \psi_{1}\left(E_{1}\right)\right\} \quad i=2,3, \ldots, n . \tag{14}
\end{align*}
$$

The relation between the spectra of H_{2} and the one-parameter family of Hamiltonians $H_{3}(\lambda)$ depends on the choice of value for the parameter λ.
(i) $-\infty<\lambda<-1 . \psi_{2}\left(E_{1}, \lambda\right)$ has a node at a finite value of x and the corresponding H_{3} will be singular at that value of x. Hamiltonians with such singularities may be rejected on physical grounds.
(ii) $-1<\lambda<\infty . \psi_{2}\left(E_{1}, \lambda\right)$ is nodeless and $\psi_{3}\left(E_{1}, \lambda\right)$ given by (13) is normalisable. For these values of λ, H_{3} has a true bound state at energy E_{1} with $\psi_{3}\left(E_{1}, \lambda\right)$ as the ground-state eigenfunction. Hence H_{3} and H_{1} have identical spectra. It is easy to show from (8), (13) and (14) that the ground state of H_{3} is renormalised while the other eigenstates are not. For $\lambda=0, H_{3}=H_{1}$. For other values of λ, H_{3} is a member of the phase-equivalent family for H_{1} (Sukumar 1985b).
(iii) $\lambda=-1$. Equation (8) may be used to give

$$
\begin{align*}
& \tilde{\psi}_{2}\left(E_{1}\right) \equiv \psi_{2}\left(E_{1},-1\right) \sim\left[\psi_{1}\left(E_{1}\right)\right]^{-1} \int_{x}^{\infty} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y \tag{15}\\
& \tilde{H}_{3} \equiv H_{3}\left(E_{1},-1\right)=H_{1}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \ln \int_{\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y . \tag{16}
\end{align*}
$$

Equations (13) and (15) show that $\psi_{3}\left(E_{1},-1\right)$ is not a normalisable solution. Hence E_{1} is not an eigenenergy of $\tilde{H}_{3} . \tilde{H}_{3}$ and H_{2} have identical spectra. It is then possible to conclude that \tilde{H}_{3} has a spectrum identical to that of H_{1} except for missing the ground state of H_{1}. The eigenfunctions of \tilde{H}_{3} for the eigenenergies $E_{i}, i=2,3, \ldots, n$, are given by (14) with $\lambda=-1 . \tilde{H}_{3}$ is identical to the Hamiltonian generated by am (see also Chaturvedi and Ragunathan 1986).
(iv) $\lambda=\infty$. Equation (8) may be used to give

$$
\begin{align*}
& {\underset{\psi}{\psi}}_{2}\left(E_{1}\right) \equiv \psi_{2}\left(E_{1}, \infty\right) \sim\left[\psi_{1}\left(E_{1}\right)\right]^{-1} \int_{-\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y \tag{17}\\
& \tilde{H}_{3} \equiv H_{3}\left(E_{1}, \infty\right)=H_{1}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \ln \int_{-\infty}^{x} \psi_{1}^{2}\left(E_{1}\right) \mathrm{d} y . \tag{18}
\end{align*}
$$

Equations (13) and (17) show that $\psi_{3}\left(E_{1}, \infty\right)$ is not a normalisable solution and E_{1} is not an eigenenergy of \tilde{H}_{3}. Therefore, \tilde{H}_{3}, H_{2} and \tilde{H}_{3} have identical spectra. The eigenfunctions of \tilde{H}_{3} for the eigenenergies $E_{i}, i=2,3, \ldots, n$, are given by (14) with $\lambda=\infty . \tilde{H}_{3}$ is identical to the Hamiltonian generated by M.

We have shown that the procedures for eliminating the ground state based on the Marchenko equations for left and right incidences are each equivalent to the application of two Darboux transformations. It is easy to show that a parallel analysis may be carried out for the case of the addition of a new ground state and that the application of two appropriately chosen D transformations produces the same potentials as those generated by the AM and m procedures for the corresponding case.

The above discussion for the x space ($-\infty \leqslant x \leqslant \infty$) may now be compared with the discussion for the r space ($0 \leqslant r \leqslant \infty$) given in Sukumar (1985c), where four different types of possible transformations of the radial analogue of H_{1} were identified. It will be assumed from now on that $H_{1}(r)$ has centrifugal terms corresponding to angular momentum l. It was shown that a transformation identified as T_{1} eliminates the ground state of H_{1} and changes the behaviour of the eigenfunctions in the limit $r \rightarrow 0$ from r^{l} to r^{l+1}. A transformation identified as T_{2} was used to add a state below the ground state of H_{1} and alter the eigenfunction behaviour as $r \rightarrow 0$ from r^{\prime} to r^{i-1}. It was shown that a transformation T_{3} maintains the spectrum of H_{1} but alters the limiting value of ψ as $r \rightarrow 0$ from r^{l} to r^{l+1}, while a transformation T_{4} maintains the spectrum of H_{1} and
alters the behaviour of the eigenfunctions as $r \rightarrow 0$ from r^{t} to r^{t-1}. Each of the four transformations $T_{1}-T_{4}$ changes the angular momentum state as identified by noting the behaviour near $r=0$. It must be emphasised that for all potentials other than the Coulomb potential each of the four transformations leaves unaltered the angular momentum state as identified by the wavefunction behaviour as $r \rightarrow \infty$. Therefore, no simple identification of the centrifugal part of the new potentials generated by a single application of one of the transformations $T_{1}-T_{4}$ is possible. The radial analogue of the AM procedure for eliminating the ground state has been shown (Sukumar 1985c) to be equivalent to the application of T_{1} followed by T_{4}. The new Hamiltonian arising after T_{1} and T_{4} is the radial analogue of \tilde{H}_{3} (equation (16)). It is easy to show that the new eigenfunctions after the two transformations have behaviour as $r \rightarrow 0$ and $r \rightarrow \infty$ unaltered from that for the eigenfunctions of $H_{1}(r)$, i.e. the centrifugal part of the $\tilde{H}_{3}(r)$ is easily identified to be the same as that for H_{1}.

The radial analogue of the M procedure is generated by the application of T_{1} followed by T_{3}. The resulting new Hamiltonian can be identified as the radial analogue of ${\underset{H}{H}}_{3}$ (equation (18)). It is easy to show that, after the application of T_{1} and T_{3}, the new eigenfunctions have their behaviour as $r \rightarrow 0$ changed from r^{l} to r^{l+2} while the angular momentum state as reflected by the $r \rightarrow \infty$ limit of the eigenfunctions is unaltered from that for the eigenfunctions of $H_{1}(r)$, i.e. the potential term in the radial analogue of \tilde{H}_{3} would have centrifugal-like terms for short-range values of r even after the centrifugal term $l(l+1) / r^{2}$ is subtracted out. Therefore, no simple identification of the centrifugal part of the new potential generated by the radial analogue of the m procedure is possible.

References

Abraham P B and Moses H E 1980 Phys. Rev. A 221333
Andrianov A A, Borisov N V and Ioffe M V 1984 Phys. Lett. 105A 19
Chaturvedi S and Raghunathan K 1986 J. Phys. A: Math. Gen. 19 L775
Darboux G 1882 C. R. Acad. Sci., Paris 941456
Gel'fand I M and Levitan B M 1951 Am. Math. Soc. Transl. 1253
Luban M and Pursey D L 1986 Phys. Rev. D 33431
Marchenko V A 1955 Dokl. Akad. Nauk SSSR 104695
Newton R G 1980 J. Math. Phys. 21493
Pursey D L 1986 Phys. Rev. D 331048
Sukumar C V 1985a J. Phys. A: Math. Gen. 18 L697

- 1985b J. Phys. A: Math. Gen. 182917
- 1985c J. Phys. A: Math. Gen. 182937

Witten E 1981 Nucl. Phys. B 188513

