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LETTER TO THE EDITOR 

Supersymmetric transformations and Hamiltonians generated 
by the Marchenko equations 

C V Sukumar 
Institute of Physics, University of Aarhus, DK-8000 ,&rhus C, Denmark 

Received 9 February 1988 

Abstract. Three different isospectral Hamiltonians have been generated by eliminating the 
ground state of a given Hamiltonian using procedures based on the Marchenko equations 
for left- and right-incident waves and the standard model of supersymmetric quantum 
mechanics. It is shown that each of the two procedures based on the Marchenko equation 
is equivalent to the application of two appropriately chosen supersymmetric transforma- 
tions. 

Let 

be a Hamiltonian with bound states $,(Ei) at energies Ei, i = 1,2, . . . , n. Three different 
procedures for eliminating the ground state of H, and generating a new Hamiltonian 
with bound states at energies Ei, i = 2,3, . . . , n, have been discussed in the literature. 
The first procedure based on the Gel’fand-Levitan integral equation (Gel’fand and 
Levitan 1951) was discussed by Abraham and Moses (1980) and will hereafter be 
referred to as AM. For the spatial domain --CO d x d -CO the procedure used by AM is 
equivalent to using the Marchenko equation (Marchenko 1955) for waves incident 
from the left (Newton 1980). The second procedure (Pursey 1986) is based on the 
Marchenko equation for waves incident from the right and will hereafter be referred 
to as M. The third procedure is based on a standard model of supersymmetric quantum 
mechanics (Witten 1981) and finds a partner Hamiltonian to H, by using an appropriate 
factorisation of H, (Andrianov er a1 1984, Sukumar 1985a, b). The third procedure 
has been identified as being equivalent to the use of the Darboux transformation for 
second-order differential equations (Darboux 1882) and will be referred to as D. The 
three new Hamiltonians generated by the three procedures have the same spectrum of 
eigenvalues but in general have different reflection and transmission coefficients for 
positive energies (Pursey 1986, Luban and Pursey 1986). It is the purpose of this letter 
to show that the procedures used by AM and M are each equivalent to a different 
two-step procedure based on two appropriately chosen D transformations. 

It has been shown that the ground-state eigenfunction I,!II(El) of H, may be used 
to factorise H, in the form 

H1= A:(E, )A;(E, )  + El (2) 
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will be assumed to be normalised to unity throughout this paper. The D 

transformation generates the partner Hamiltonian 

H 2  = A;(El)A:(El) + El = H1 - (d2/dx2) In t,b1(El) (4) 

whose spectrum is identical to that of HI except for the missing ground-state energy 
E l .  The eigenstates of H2 are given by 

( 5 )  

Even though El is not an eigenenergy of H 2 ,  a formal solution of the Schrodinger 
equation for H2 at energy El may be given as 

+2( Ei 1 - A;( El ) $1 ( Ei 1 i = 2 , 3 , . .  ., n. 

cp,(El) - [+l(E1)I-L. ( 6 )  

A second linearly independent solution given by 

G2(E1) = cp2(E1) 1' [ ( P ~ ( & ) I - ~  dy 

may be used to give the general solution 

(C12(E1, A )  may then be used to factorise H2 in the new form 

H2=A:(El, A)A;(El,A)+El 

(7) 

This new factorisation allows the identification of a new supersymmetric partner to 
H2 by the application of a second D transformation and is given by 

H3(A)  = 9 A)A:(El A )+ El 

= H2 - (d2/dx2) In +2(E1, A )  

d2 
dx = H, -7 In( 1 + A l:m + : ( E , )  d y ). 

The eigenfunctions of H3 for energies Ei, i = 2 ,3 , .  . . , n, are given by 

+3(Ei, A - A;( El A +2(Ei) i = 2 , 3  ,..., n. (12) 

+,(El, A)-[+2(El, A)]-'* (13) 

Furthermore, 

Equations (12), (lo), (5)  and ( 3 )  may be used to generate the eigenfunctions of H3 
for energies Ei ,  i # 1,  in the form 

The relation between the spectra of H2 and the one-parameter family of Hamiltonians 
H 3 ( h )  depends on the choice of value for the parameter A. 
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(i)  -CO < A < -1. $2( El ,  A )  has a node at a finite value of x and the corresponding 
H, will be singular at that value of x. Hamiltonians with such singularities may be 
rejected on physical grounds. 

(ii) -1 < A < 00. J12(E1, A )  is nodeless and $ , ( E , ,  A )  given by (13) is normalisable. 
For these values of A, H3 has a true bound state at energy El with $3( E,, A )  as the 
ground-state eigenfunction. Hence H3 and H, have identical spectra. It is easy to 
show from (8), (13) and (14) that the ground state of H3 is renormalised while the 
other eigenstates are not. For A = 0, H3 = HI. For other values of A, H3 is a member 
of the phase-equivalent family for HI (Sukumar 1985b). 

(iii) A = -1. Equation (8) may be used to give 

J x  

(16) 
d2 

dx 
f i 3  = H3( El , - 1 ) = H, - 7 In 1, $:( E,) dy. 

Equations (13) and (15) show that $ , ( E l ,  -1) is not a normalisable solution. Hence 
El is not an eigenenergy of 8,. 8, and H2 have identical spectra. It is then possible 
to conclude that 8, has a spectrum identical to that of H1 except for missing the 
ground state of HI. The eigenfunctions of 8, for the eigenenergies Ei, i = 2,3, . . . , n, 
are given by (14) with A = -1. 8, is identical to the Hamiltonian generated by AM 

(see also Chaturvedi and Ragunathan 1986). 
(iv) A =CO. Equation (8) may be used to give 

Equations (13) and (17) show that I , ~ ~ ( E , , ~ C O )  is not a normalisable solution and 
E, is not an eigenenzrgy of f i 3 .  Therefore, H,, H 2  and f i 3  have identical spectra. The 
eigenfungtions of H3 for the eigenenergies Ei, i = 2,3, . . . , n, are given by (14) with 
A = CO. H3 is identical to the Hamiltonian generated by M. 

We have shown that the procedures for eliminating the ground state based on the 
Marchenko equations for left and right incidences are each equivalent to the application 
of two Darboux transformations. It is easy to show that a parallel analysis may be 
carried out for the case of the addition of a new ground state and that the application 
of two appropriately chosen D transformations produces the same potentials as those 
generated by the AM and M procedures for the corresponding case. 

The above discussion for the x space (-COS x s CO) may now be compared with 
the discussion for the r space (0 S r S CO) given in Sukumar (1985c), where four different 
types of possible transformations of the radial analogue of HI were identified. It will 
be assumed from now on that H , ( r )  has centrifugal terms corresponding to angular 
momentum 1. It was shown that a transformation identified as T, eliminates the ground 
state of HI and changes the behaviour of the eigenfunctions in the limit r+O from r' 
to r'+'. A transformation identified as T2 was used to add a state below the ground 
state of H I  and alter the eigenfunction behaviour as r + 0 from rl to rl-l.  It was shown 
that a transformation T, maintains the spectrum of HI but alters the limiting value of 
$ as r + 0 from r' to r'+', while a transformation T4 maintains the spectrum of H, and 
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alters the behaviour of the eigenfunctions as r + 0 from rl to r'-l. Each of the four 
transformations TI- T4 changes the angular momentum state as identified by noting 
the behaviour near r = 0. It must be emphasised that for all potentials other than the 
Coulomb potential each of the four transformations leaves unaltered the angular 
momentum state as identified by the wavefunction behaviour as r + CO. Therefore, no 
simple identification of the centrifugal part of the new potentials generated by a single 
application of one of the transformations Tl-T4 is possible. The radial analogue of 
the AM procedure for eliminating the ground state has been shown (Sukumar 1985~)  
to be equivalent to the application of TI followed by T4. The new Hamiltonian arising 
after TI and T4 is the radial analogue of fi3 (equation (16)). It is easy to show that 
the new eigenfunctions after the two transformations have behaviour as r + 0 and r + CO 
unaltered from that for the eigenfunctions of HI( r), i.e. the centrifugal part of the 
fi3(r) is easily identified to be the same as that for HI.  

The radial analogue of the M procedure is generated by the application of TI 
follBwed by T3.  The resulting new Hamiltonian can be identified as the radial analogue 
of H3 (equation (18)). It is easy to show that, after the application of TI and T,, the 
new eigenfunctions have their behaviour as r+O changed from rl to rlt2 while the 
angular momentum state as reflected by the r + CO limit of the eigenfunctions is unaltered 
f r o 3  that for the eigenfunctions of H l ( r ) ,  i.e. the potential term in the radial analogue 
of H3 would have centrifugal-like terms for short-range values of r even after the 
centrifugal term I( I + 1)/ r2 is subtracted out. Therefore, no simple identification of 
the centrifugal part of the new potential generated by the radial analogue of the M 
procedure is possible. 
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